Cave ‘Krem Mawmluh’ of Meghalaya plateau – The base of the ‘Meghalayan Age’ and ‘4.2 ka BP Event’ in Holocene (Anthropocene)

Uma Shankar

Abstract


Our land, the Meghalaya plateau, has been attracting enormous attention of worldwide academia since the ratification of subdivisions of the Holocene Epoch into three Ages, viz., the Greenlandian, the Northgrippian and the Meghalayan, which correspond to the Early, Middle and Late Holocene, respectively, by the International Union of Geological Sciences (IUGS) in July, 2018. The evidences for determining the stratigraphic boundary of the Meghalayan Age were fetched from the cave ‘Krem Mawmluh’ near Cherrapunji in the State of Meghalaya, India. Thus, we are now living in the Phanerozoic Eon, Cenozoic Era, Quaternary Period, Holocene Epoch, and ‘Meghalayan Age’ in ‘icehouse climate state’ of the Earth. The Meghalayan Age began 4,200 years before present (i.e., before 1st January 1950) or 4,250 years before 2000 AD (i.e., b2k). It is concisely popular as ‘4.2 ka BP Event’. This event of abrupt and large scale climate change is attributed with the fall of four major ancient civilizations. The Meghalayan Age marks a period of intense human-environment interactions and their impact on the Earth’s ecosystems, ecology, biodiversity, climate and weather patterns, and constitutes an important stage in informally termed epoch, the ‘Anthropocene’.


Keywords


Meghalayan Age, 4.2 ka BP Event, Holocene, Anthropocene, Cave Mawmluh, Meghalaya

References


References

Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K. 2012. An abrupt shift in the Indian monsoon 4000 years ago. Geophysical Monograph Series, 198: 75–88.

Blij, H. de 2012. Why geography matters: more than ever. Oxford University Press. pp. 368.

Booth, R.K., Jackson, S.T., Forman, S.L., Kutzbach, J.E., Bettis III., E.A., Kreig, J. and Wright, D.K. 2005. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages. Holocene, 15: 321–328.

Breitenbach, S.F.M., Lechleitner, F.A., Meyer, H., Diengdoh, G., Mattey, D. and Marwan, N. 2015. Cave ventilation and rainfall signals in dripwater in a monsoonal setting – a monitoring study from NE India. Chemical Geology, 402: 111–124.

Breitenbach, S.F.M., Rehfeld, K., Goswami, B., Baldini, J.U.L., Ridley, H.E., Kennett, D.J., Prufer, K.M., Aquino, V.V., Asmerom, Y., Polyak, V.J., Cheng, H., Kurths, J. and Marwan, N. 2012. Constructing Proxy Records from Age models (COPRA). Climate of the Past 8: 1765–1779.

Chang, K.C. 1999. China on the eve of the Historical Period. In: Loewe, M. and Shaughnessy, E. L. (eds.), The Cambridge History of Ancient China – From the Origins of Civilization to 221 BC. Cambridge University Press, New York. pp. 37–73.

Cullen, H.M., deMenocal, P.B., Hemming, S., Hemming, G., Brown, F.H., Guilderson, T. and Sirocko, F. 2000. Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology, 28: 379–382.

Dalfes, H., Kukla, G. and Weiss, H. 1997. Third Millennium BC Climate Change and Old World Collapse (NATO ASI Series 1, 49). Springer Publishing, New York.

Davison, N. 2019. The Anthropocene epoch: have we entered a new phase of planetary history? The Guardian, 30 May, 2019.

deMenocal, P. 2001. Cultural responses to climate change during the late Holocene. Science, 292: 667–673.

Dixit, Y., Hodell, D.A., Giesche, A., Tandon, S.K., Gázquez, F., Saini, H.S., Skinner, L.C., Mujtaba, S.A., Pawar, V. and Singh, R.N. 2018. Intensified summer monsoon and the urbanization of Indus Civilization in northwest India. Scientific Reports, 8: 4225–2018.

Dixit, Y., Hodell, D.A. and Petrie, C.A. 2014. Abrupt weakening of the summer monsoon in northwest India~ 4100 yr ago. Geology, 42: 339–342.

Drysdale, R., Zanchetta, G., Hellstrom, J., Maas, R., Fallick, A., Pickett, M., Cartwright, I. and Piccini, L. 2006. Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian cave flowstone. Geology, 34: 101–104.

Enzel, Y., Ely, L.L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S.N., Baker, V.R. and Sandler, A. 1999. High-resolution Holocene environmental changes in the Thar Desert, northwestern India. Science 284: 125–128.

Gao, J.G. 2019. Dominant plant speciation types. A commentary on: plant speciation in the age of climate change. Annals of Botany 124(5): iv–vi. https://doi.org/10.1093/aob/mcz174

Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K. & Wiltshire, A. 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society Series B 365(1554): 2973–2989. https://doi.org/10.1098/rstb.2010.0158

Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G. (eds.) 2012. The geologic time scale 2012. Elsevier.

Hill, C.A. and Forti, P. 1997. Cave Minerals of the World. 2nd edition. Huntsville, Alabama: National Speleological Society Inc. pp. 217, 225.

Hong, B., Hong, Y., Uchida, M., Shibata, Y., Cai, C., Peng, H., Zhu, Y., Wang, Y. and Yuan, L. 2014. Abrupt variations of Indian and East Asian summer monsoons during the last deglacial stadial and interstadial. Quaternary Science Reviews, 97: 58-70.

Hong, B., Uchida, M., Hong, Y., Peng, H., Kondo, M. and Ding, H. 2018. The respective characteristics of millennial-scale changes of the India summer monsoon in the Holocene and the Last Glacial. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 155-165.

Huguet, C., Routh, J., Fietz, S., Lone, M.A., Kalpana, M.S., Ghosh, P., … Rangarajan, R. 2018. Temperature and monsoon tango in a tropical stalagmite: last glacial-interglacial climate dynamics. Scientific Reports, 8(1): 5386. https://doi.org/10.1038/s41598-018-23606-w

IUCN 2020. The IUCN Red List of threatened species. Version 2020–1. Available at: https://www.iucnredlist.org (Accessed on 29.01.2021).

Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X., Zhang, H., Li, H., Ning, Y. and Edwards, R.L. 2017. The Indian monsoon variability and civilization changes in the Indian subcontinent. Science Advances, 3, e1701296, https://doi.org/10.1126/sciadv.1701296.

Kathayat, G., Cheng, H., Sinha, A., Berkelhammer, M., Zhang, H., Duan, P., Li, H., Li, X., Ning, Y. and Edwards, R.L. 2018. Evaluating the timing and structure of the 4.2 ka event in the Indian summer monsoon domain from an annually resolved speleothem record from Northeast India. Climate of the Past, 14: 1869-1879.

Levin, D.A. 2002. The role of chromosomal change in plant evolution. Oxford University Press, New York.

Liu, F.G. and Feng, Z.D. 2012. A dramatic climatic transition at ∼4000 cal. yr BP and its cultural responses in Chinese cultural domains. Holocene, 22: 1181–1197.

Luhr, J.F. (ed.) 2007. Earth. Dorling Kindersley Publishing Staff. ISBN 978-0-7566-3332-5.

Montanez, I. and Soreghan, G.S. 2006. Earth's Fickle Climate: Lessons Learned from Deep-Time Ice Ages. Geotimes, 51: 24–27.

Lisiecki, L.E. and Raymo, M.E. 2005. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography and Paleoclimatology, 20: PA1003.

Marshall, M.H., Lamb, H.F., Huws, D., Davies, S.J., Bates, R., Bloemendal, J., Boyle, J., Leng, M.J., Umer, M. and Bryant, C. 2011. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile. Global and Planetary Change, 78: 147–161.

Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlén, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R. and Steig, E.J. 2004. Holocene climate variability. Quaternary Research, 62: 243–255.

Mehrotra, N., Shah, S.K., Basavaiah, N., Laskar, A.H. and Yadava, M. 2019. Resonance of the ‘4.2ka event’ and terminations of global civilizations during the Holocene, in the palaeoclimate records around PT Tso Lake, Eastern Himalaya. Quaternary International, 507: 206-216.

Moore, G.W. 1952. Speleothems – a new cave term. National Speleological Society News, 10(6): 2.

Nakamura, A., Yokoyama, Y., Maemoku, H., Yagi, H., Okamura, M., Matsuoka, H., Miyake, N., Osada, T., Adhikari, D.P., Dangol, V., Ikehara, M., Miyairi, Y. and Matsuzaki, H. 2016. Weak monsoon event at 4.2 ka recorded in sediment from Lake Rara, Himalayas. Quaternary International, 397: 349–359.

Otto, S.P. 2018. Adaptation, speciation and extinction in the Anthropocene. Proceedings of the Royal Society Series B 285(1891): 20182047. https://doi.org/10.1098/rspb.2018.2047

Pandey, H.N., Tripathi, R.S. and Shankar, U. 1993. Nutrient cycling in an excessively rainfed subtropical grassland at Cherrapunji. Journal of Biosciences, 18(3): 395-406.

Prokop, P. 2020. Where the Meghalayan meets the anthropocene: stratigraphic signals of human-environmental interactions on the periphery of indian civilisation. Geographia Polonica, 93(4): 505-523.

Prokop, P. and Walanus, A. 2015. Variation in the orographic extreme rain events over the Meghalaya Hills in northeast India in the two halves of the twentieth century. Theoretical and Applied Climatology, 121(1-2): 389-399.

Ran, M. and Chen, L. 2019. The 4.2 ka BP climatic event and its cultural responses. Quarternary International, 521: 158-167.

Sabin, T., Krishnan, R., Ghattas, J., Denvil, S., Dufresne, J.-L., Hourdin, F. and Pascal, T. 2013. High resolution simulation of the South Asian monsoon using a variable resolution global climate model. Climate Dynamics, 41: 173–194.

Shankar, U., Tripathi, R.S. and Pandey, Η.Ν. 1991. Structure and seasonal dynamics of humid tropical grasslands in India. Journal of Vegetation Science, 2: 711-714.

Shankar, U., Boral, L., Pandey, H.N. and Tripathi, R.S. 1993. Degradation of land due to coal mining and its natural recovery pattern. Current Science, 65(9): 680-687.

Shankar, U., Yadava, A.S., Rai, J.P.N. & Tripathi, R.S. 2011. Status of alien plant invasions in north-eastern region of India. In: Bhatt, J.R., Singh, J.S., Singh, S.P., Tripathi, R.S. & Kohli, R.K. (eds.), Invasive alien plants: an ecological appraisal for the Indian subcontinent. CABI, UK. Pp. 174 – 188.

Shivanna, K.R. 2020. Speciation in flowering plants: an overview. Rheedea 30(4): 409-426.

Soriano, C. 2020. On the Anthropocene formalization and the proposal by the Anthropocene Working Group. Geologica Acta, 18(6): 1-10.

Staubwasser, M., Sirocko, F., Grootes, P. and Segl, M. 2003. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophysical Research Letters, 30..

Stanley, J.-D., Krom, M.D., Cliff, R.A. and Woodward, J.C. 2003. Nile flow failure at the end of the Old Kingdom, Egypt: strontium isotopic and petrologic evidence. Geoarchaeology: An International Journal 18: https://doi.org/10.1002/gea.10065.

Steffen, W., Crutzen, P.J. and McNeill, J.R. 2007. The Anthropocene: are humans now overwhelming the great forces of Nature? AMBIO, 36(8): 614–621.

Thomas, C.D. 2015. Rapid acceleration of plant speciation during the Anthropocene. Trends in Ecology and Evolution 30(8): 448–455. https://doi.org/10.1016/j.tree.2015.05.009

Thompson, L.G., Mosley-Thompson, E., Davis, M.E., Henderson, K.A., Brecher, H.H., Zagorodnov, V.S., Mashiotta, T.A., Lin, P.N., Mikhalenko, V.N., Hardy, D.R. and Beer, J. 2002. Kilimanjaro ice core records: evidence of holocene climate change in tropical Africa. Science, 298: 589–593.

Vellend, M., Baeten, L., Becker-Scarpitta, A., Boucher-Lalonde, V., Mccune, J.L., Messier, J., Myers-Smith, I.H. & Sax, D.F. 2017. Plant biodiversity change across scales during the Anthropocene. Annual Review of Plant Biology 68: 563–586. https://doi.org/10.1146/annurev-arplant-042916-040949

Vince, G. 2011. An Epoch Debate. Science, 334(6052): 32–37.

Walker, J.D., Geissman, J.W., Bowring, S.A., and Babcock, L.E., compilers, 2018. Geologic Time Scale v. 5.0: Geological Society of America, https://doi.org/10.1130/2018.CTS005R3C. ©2018 The Geological Society of America.

Wang, W. 2004. Discussion on the large-scale cultural changes at ∼2000 BC in China. Archaeology 1: 67–77. (in Chinese with English Abstract).

Weiss, H. 2016. Global megadrought, societal collapse and resilience at 4.2-3.9 ka BP across the mediterranean and west asia. PAGES, 24: 62–63.

Weiss, H. 2000. Beyond the Younger Dryas: Collapse as adaptation to abrupt climate change in ancient West Asia and the Eastern Mediterranean. In: Bawden, G. and Reycraft, R. (eds.), Environmental Disaster and the Archaeology of Human Response. University of New Mexico Press, Albuquerque: Maxwell Museum of Anthropology, pp. 63-74.

Weiss, H. and Bradley, R. 2001. What drives societal collapse? Science, 291: 609–610.

Weiss, H., Courty, M.-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R. and Curnow, A. 1993. The genesis and collapse of third millennium north Mesopotamian civilization. Science, 261: 995–1004.

Wu, W.X. and Liu, T.S. 2001. 4000 a B.P. event and its implications for the origin of ancient Chinese civilization. Quaternary Science, 21: 443–451. (in Chinese with English Abstract).

Wu, W.X. and Liu, T.S. 2004. Possible role of the ‘holocene event 3’ on the collapse of neolithic cultures around the Central Plain of China. Quaternary International, 117: 153–166.

Zanchetta, G., Regattieri, E., Isola, I., Drysdale, R.N., Bini, M., Baneschi, I. and Hellstrom, J.C. 2016. The so-called “4.2 event” in the central Mediterranean and its climatic teleconnections. Alpine Mediterranean Quaternary, 29: 5–17.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

COPYRIGHT of this Journal vests fully with the National Instional Institute of Ecology. Any commercial use of the content on this site in any form is legally prohibited.