A forward genetics approach identifies pathogenicity genes in Fusarium oxysporum f. sp. carthami, a fungus causing vascular wilt disease of safflower
Abstract
Keywords
References
Anantharaman, V., & Aravind, L. (2004). Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics, 5(1), 45. https://doi.org/10.1186/1471-2164-5-45
Chen, X.-L., Yang, J., & Peng, Y.-L. (2011). Large-Scale Insertional Mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-Mediated Transformation. In J.-R. Xu & B. H. Bluhm (Eds.), Fungal Genomics: Methods and Protocols (pp. 213–224). Humana Press. https://doi.org/10.1007/978-1-61779-040-9_16
Davis, R., Moore, N., & Kochman, J. (1996). Characterisation of a population of Fusarium oxysporum f.sp. Vasinfectum causing wilt of cotton in Australia. Australian Journal of Agricultural Research, 47(7), 1143. https://doi.org/10.1071/AR9961143
Di Pietro, A., García-Maceira, F. I., Méglecz, E., & Roncero, M. I. G. (2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 39(5), 1140–1152. https://doi.org/10.1111/j.1365-2958.2001.02307.x
Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol, 4(5), 315–325.
Duyvesteijn, R. G. E., Van Wijk, R., Boer, Y., Rep, M., Cornelissen, B. J. C., & Haring, M. A. (2005). Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular Microbiology, 57(4), 1051–1063. https://doi.org/10.1111/j.1365-2958.2005.04751.x
Faris, J. D., & Friesen, T. L. (2020). Plant genes hijacked by necrotrophic fungal pathogens. Current Opinion in Plant Biology, 56, 74–80. https://doi.org/10.1016/j.pbi.2020.04.003
Gecgel, U., Demirci, M., Esendal, E., & Tasan, M. (2007). Fatty Acid Composition of the Oil from Developing Seeds of Different Varieties of Safflower (Carthamus tinctorius L.). Journal of the American Oil Chemists’ Society, 84(1), 47–54. https://doi.org/10.1007/s11746-006-1007-3
Idnurm, A., Bailey, A. M., Cairns, T. C., Elliott, C. E., Foster, G. D., Ianiri, G., & Jeon, J. (2017). A silver bullet in a golden age of functional genomics: The impact of Agrobacterium-mediated transformation of fungi. Fungal Biology and Biotechnology, 4(1), 6. https://doi.org/10.1186/s40694-017-0035-0
Imazaki, I., Kurahashi, M., Iida, Y., & Tsuge, T. (2007). Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Molecular Microbiology, 63(3), 737–753. https://doi.org/10.1111/j.1365-2958.2006.05554.x
Juber, K., Hassan, A., & Alhamiri, Y. N. H. (2018). Evaluation of Biocontrol Agents and Chemical Inducers for Managing Vascular Wilt of Tomato Caused by Fusarium oxysporum f.sp. Lycopersici.
Kalpana Sastry, R., & Chattopadhyay, C. (2003). Development of Fusarium Wilt-resistant Genotypes in Safflower (Carthamus tinctorius). European Journal of Plant Pathology, 109(2), 147–151. https://doi.org/10.1023/A:1022502618887
Kukreja, B., Joshi, G., Sharma, E., Kapoor, R., Goel, S., Jagannath, A., Kumar, A., & Agarwal, M. (2018). Standardization of Hydroponics based procedure for High-Throughput Screening and its Application for identification of differential host response in Safflower against Fusarium oxysporum carthamii. Vegetos- An International Journal of Plant Research, 31(2), 5. https://doi.org/10.5958/2229-4473.2018.00049.6
Lakshman, D. K., Pandey, R., Kamo, K., Bauchan, G., & Mitra, A. (2012). Genetic transformation of Fusarium oxysporum f.sp. Gladioli with Agrobacterium to study pathogenesis in Gladiolus. European Journal of Plant Pathology, 133(3), 729–738. https://doi.org/10.1007/s10658-012-9953-0
Liu, X., Ling, J., Xiao, Z., Xie, B., Fang, Z., Yang, L., Zhang, Y., Lv, H., & Yang, Y. (2017). Characterization of emerging populations of Fusarium oxysporum f. Sp. Conglutinans causing cabbage wilt in China. Journal of Phytopathology, 165(11–12), 813–821. https://doi.org/10.1111/jph.12621
Ma, L.-J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W.-B., Woloshuk, C., Xie, X., Xu, J.-R., Antoniw, J., Baker, S. E., Bluhm, B. H., … Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367–373. https://doi.org/10.1038/nature08850
Matthaus, B., Özcan, M. M., & Al Juhaimi, F. Y. (2015). Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Natural Product Research, 29(2), 193–196. https://doi.org/10.1080/14786419.2014.971316
Michielse, C. B., Wijk, R. van, Reijnen, L., Manders, E. M. M., Boas, S., Olivain, C., Alabouvette, C., & Rep, M. (2009). The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth. PLOS Pathogens, 5(10), e1000637. https://doi.org/10.1371/journal.ppat.1000637
MinHui, L., Rong, Z., DaGang, H., PingGen, X., ChuXiong, Z., & ZiDe, J. (2009). Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum f. Sp. Cubense race 4. Acta Phytopathologica Sinica, 39(4), 405–412.
Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., & Kang, S. (2001). Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology®, 91(2), 173–180. https://doi.org/10.1094/PHYTO.2001.91.2.173
Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y., & Tsuge, T. (2001). Mutation of an Arginine Biosynthesis Gene Causes Reduced Pathogenicity in Fusarium oxysporum f. Sp. Melonis. Molecular Plant-Microbe Interactions®, 14(4), 580–584. https://doi.org/10.1094/MPMI.2001.14.4.580
Nykiforuk, C. L., Shewmaker, C., Harry, I., Yurchenko, O. P., Zhang, M., Reed, C., Oinam, G. S., Zaplachinski, S., Fidantsef, A., Boothe, J. G., & Moloney, M. M. (2012). High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Research, 21(2), 367–381. https://doi.org/10.1007/s11248-011-9543-5
Palacio-Barrera, A. M., Areiza, D., Zapata, P., Atehortúa, L., Correa, C., & Peñuela-Vásquez, M. (2019). Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnology Reports, 21, e00308. https://doi.org/10.1016/j.btre.2019.e00308
Pawar, S. V., Dey, U., Munde, V. G., Sutar, D. S., & Pal, D. (2013). Management of seed/soil borne diseases of safflower by chemical and biocontrol agents. African Journal of Microbiology Research, 7(18), 1834–1837. https://doi.org/10.5897/AJMR12.2010
Rho, H.-S., Kang, S., & Lee, Y. H. (2001). Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells, 12, 407–411.
Santos, M. C. dos, Mendonça, M. de L., & Bicas, J. L. (2020). Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources and Bioprocessing, 7(1), 13. https://doi.org/10.1186/s40643-020-0301-5
Singh, K. N., Parveen, S., Kaushik, P., Goel, S., Jagannath, A., Kumar, K., & Agarwal, M. (2022). Identification and validation of in silico mined polymorphic EST-SSR for genetic diversity and cross-species transferability studies in Safflower. Journal of Plant Biochemistry and Biotechnology, 31(1), 168–177. https://doi.org/10.1007/s13562-021-00673-1
Singh, N., Anand, G., & Kapoor, R. (2019). Virulence and genetic diversity among Fusarium oxysporum f. Sp. Carthami isolates of India using multilocus RAPD and ISSR markers. Tropical Plant Pathology, 44(5), 409–422.
Singh, S. K., Singh, B., & Singh, V. B. (2011). Morphological, cultural and pathogenic variability among the isolates of Fusarium oxysporum f. Sp. Ciceri causing wilt of chick pea. Annals of Plant Protection Sciences, 19(1), 155–158.
Srivastava, S., Pathak, N., & Srivastava, P. (2011). Identification of Limiting Factors for the Optimum Growth of Fusarium Oxysporum in Liquid Medium. Toxicology International, 18(2), 111–116. https://doi.org/10.4103/0971-6580.84262
Takken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 11(2), 309–314.
Tayal, P., Raj, S., Sharma, E., Kumar, M., Dayaman, V., Verma, N., Jogawat, A., Dua, M., Kapoor, R., & Johri, A. K. (2017). A Botrytis cinerea KLP-7 kinesin acts as a virulence determinant during plant infection. Scientific Reports, 7(1), 1–16.
Tintor, N., Paauw, M., Rep, M., & Takken, F. L. W. (2020). The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. New Phytologist, 227(5), 1479–1492. https://doi.org/10.1111/nph.16618
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.
COPYRIGHT of this Journal vests fully with the National Instional Institute of Ecology. Any commercial use of the content on this site in any form is legally prohibited.