A forward genetics approach identifies pathogenicity genes in Fusarium oxysporum f. sp. carthami, a fungus causing vascular wilt disease of safflower

Aabha ., Mamta Rani, Sahil Sahil, Kajol BM Singh, Kumar Paritosh, Vijay Laxmi, Manu Agarwal

Abstract


Vascular wilt disease caused by Fusarium oxysporum f. sp. carthami (Foc) is one of the biggest  constraints for safflower production in India. Understanding the basis of pathogenicity and molecular dissection of its complex processes is of immense economic importance for the effective management of the wilt disease in safflower. In this study, a forward genetic approach was employed as an unbiased tool to identify the candidate pathogenicity-related genes. Agrobacterium mediated random T-DNA mutagenesis in Foc resulted in the generation of 178 Foc transformants. A hydroponics-based pathogenicity screening of generated mutants led to the identification of 12 avirulent mutants. Genome walking with two of the single insertion mutants revealed T-DNA insertion in the intergenic region of one mutant, while in the other mutant T-DNA was inserted in the coding region of a transcription factor. The genes identified in the present study can be targeted by host-delivered RNAi to generate transgenic safflower lines resistant to Foc.

Keywords


Fusarium oxysporum, Agricultural crop plant, T-DNA mutagenesis

References


Anantharaman, V., & Aravind, L. (2004). Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability. BMC Genomics, 5(1), 45. https://doi.org/10.1186/1471-2164-5-45

Chen, X.-L., Yang, J., & Peng, Y.-L. (2011). Large-Scale Insertional Mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-Mediated Transformation. In J.-R. Xu & B. H. Bluhm (Eds.), Fungal Genomics: Methods and Protocols (pp. 213–224). Humana Press. https://doi.org/10.1007/978-1-61779-040-9_16

Davis, R., Moore, N., & Kochman, J. (1996). Characterisation of a population of Fusarium oxysporum f.sp. Vasinfectum causing wilt of cotton in Australia. Australian Journal of Agricultural Research, 47(7), 1143. https://doi.org/10.1071/AR9961143

Di Pietro, A., García-Maceira, F. I., Méglecz, E., & Roncero, M. I. G. (2001). A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Molecular Microbiology, 39(5), 1140–1152. https://doi.org/10.1111/j.1365-2958.2001.02307.x

Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Mol. Plant Pathol, 4(5), 315–325.

Duyvesteijn, R. G. E., Van Wijk, R., Boer, Y., Rep, M., Cornelissen, B. J. C., & Haring, M. A. (2005). Frp1 is a Fusarium oxysporum F-box protein required for pathogenicity on tomato. Molecular Microbiology, 57(4), 1051–1063. https://doi.org/10.1111/j.1365-2958.2005.04751.x

Faris, J. D., & Friesen, T. L. (2020). Plant genes hijacked by necrotrophic fungal pathogens. Current Opinion in Plant Biology, 56, 74–80. https://doi.org/10.1016/j.pbi.2020.04.003

Gecgel, U., Demirci, M., Esendal, E., & Tasan, M. (2007). Fatty Acid Composition of the Oil from Developing Seeds of Different Varieties of Safflower (Carthamus tinctorius L.). Journal of the American Oil Chemists’ Society, 84(1), 47–54. https://doi.org/10.1007/s11746-006-1007-3

Idnurm, A., Bailey, A. M., Cairns, T. C., Elliott, C. E., Foster, G. D., Ianiri, G., & Jeon, J. (2017). A silver bullet in a golden age of functional genomics: The impact of Agrobacterium-mediated transformation of fungi. Fungal Biology and Biotechnology, 4(1), 6. https://doi.org/10.1186/s40694-017-0035-0

Imazaki, I., Kurahashi, M., Iida, Y., & Tsuge, T. (2007). Fow2, a Zn(II)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum. Molecular Microbiology, 63(3), 737–753. https://doi.org/10.1111/j.1365-2958.2006.05554.x

Juber, K., Hassan, A., & Alhamiri, Y. N. H. (2018). Evaluation of Biocontrol Agents and Chemical Inducers for Managing Vascular Wilt of Tomato Caused by Fusarium oxysporum f.sp. Lycopersici.

Kalpana Sastry, R., & Chattopadhyay, C. (2003). Development of Fusarium Wilt-resistant Genotypes in Safflower (Carthamus tinctorius). European Journal of Plant Pathology, 109(2), 147–151. https://doi.org/10.1023/A:1022502618887

Kukreja, B., Joshi, G., Sharma, E., Kapoor, R., Goel, S., Jagannath, A., Kumar, A., & Agarwal, M. (2018). Standardization of Hydroponics based procedure for High-Throughput Screening and its Application for identification of differential host response in Safflower against Fusarium oxysporum carthamii. Vegetos- An International Journal of Plant Research, 31(2), 5. https://doi.org/10.5958/2229-4473.2018.00049.6

Lakshman, D. K., Pandey, R., Kamo, K., Bauchan, G., & Mitra, A. (2012). Genetic transformation of Fusarium oxysporum f.sp. Gladioli with Agrobacterium to study pathogenesis in Gladiolus. European Journal of Plant Pathology, 133(3), 729–738. https://doi.org/10.1007/s10658-012-9953-0

Liu, X., Ling, J., Xiao, Z., Xie, B., Fang, Z., Yang, L., Zhang, Y., Lv, H., & Yang, Y. (2017). Characterization of emerging populations of Fusarium oxysporum f. Sp. Conglutinans causing cabbage wilt in China. Journal of Phytopathology, 165(11–12), 813–821. https://doi.org/10.1111/jph.12621

Ma, L.-J., van der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P. M., Kang, S., Shim, W.-B., Woloshuk, C., Xie, X., Xu, J.-R., Antoniw, J., Baker, S. E., Bluhm, B. H., … Rep, M. (2010). Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 464(7287), 367–373. https://doi.org/10.1038/nature08850

Matthaus, B., Özcan, M. M., & Al Juhaimi, F. Y. (2015). Fatty acid composition and tocopherol profiles of safflower (Carthamus tinctorius L.) seed oils. Natural Product Research, 29(2), 193–196. https://doi.org/10.1080/14786419.2014.971316

Michielse, C. B., Wijk, R. van, Reijnen, L., Manders, E. M. M., Boas, S., Olivain, C., Alabouvette, C., & Rep, M. (2009). The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth. PLOS Pathogens, 5(10), e1000637. https://doi.org/10.1371/journal.ppat.1000637

MinHui, L., Rong, Z., DaGang, H., PingGen, X., ChuXiong, Z., & ZiDe, J. (2009). Agrobacterium tumefaciens-mediated transformation of Fusarium oxysporum f. Sp. Cubense race 4. Acta Phytopathologica Sinica, 39(4), 405–412.

Mullins, E. D., Chen, X., Romaine, P., Raina, R., Geiser, D. M., & Kang, S. (2001). Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology®, 91(2), 173–180. https://doi.org/10.1094/PHYTO.2001.91.2.173

Namiki, F., Matsunaga, M., Okuda, M., Inoue, I., Nishi, K., Fujita, Y., & Tsuge, T. (2001). Mutation of an Arginine Biosynthesis Gene Causes Reduced Pathogenicity in Fusarium oxysporum f. Sp. Melonis. Molecular Plant-Microbe Interactions®, 14(4), 580–584. https://doi.org/10.1094/MPMI.2001.14.4.580

Nykiforuk, C. L., Shewmaker, C., Harry, I., Yurchenko, O. P., Zhang, M., Reed, C., Oinam, G. S., Zaplachinski, S., Fidantsef, A., Boothe, J. G., & Moloney, M. M. (2012). High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Research, 21(2), 367–381. https://doi.org/10.1007/s11248-011-9543-5

Palacio-Barrera, A. M., Areiza, D., Zapata, P., Atehortúa, L., Correa, C., & Peñuela-Vásquez, M. (2019). Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi. Biotechnology Reports, 21, e00308. https://doi.org/10.1016/j.btre.2019.e00308

Pawar, S. V., Dey, U., Munde, V. G., Sutar, D. S., & Pal, D. (2013). Management of seed/soil borne diseases of safflower by chemical and biocontrol agents. African Journal of Microbiology Research, 7(18), 1834–1837. https://doi.org/10.5897/AJMR12.2010

Rho, H.-S., Kang, S., & Lee, Y. H. (2001). Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells, 12, 407–411.

Santos, M. C. dos, Mendonça, M. de L., & Bicas, J. L. (2020). Modeling bikaverin production by Fusarium oxysporum CCT7620 in shake flask cultures. Bioresources and Bioprocessing, 7(1), 13. https://doi.org/10.1186/s40643-020-0301-5

Singh, K. N., Parveen, S., Kaushik, P., Goel, S., Jagannath, A., Kumar, K., & Agarwal, M. (2022). Identification and validation of in silico mined polymorphic EST-SSR for genetic diversity and cross-species transferability studies in Safflower. Journal of Plant Biochemistry and Biotechnology, 31(1), 168–177. https://doi.org/10.1007/s13562-021-00673-1

Singh, N., Anand, G., & Kapoor, R. (2019). Virulence and genetic diversity among Fusarium oxysporum f. Sp. Carthami isolates of India using multilocus RAPD and ISSR markers. Tropical Plant Pathology, 44(5), 409–422.

Singh, S. K., Singh, B., & Singh, V. B. (2011). Morphological, cultural and pathogenic variability among the isolates of Fusarium oxysporum f. Sp. Ciceri causing wilt of chick pea. Annals of Plant Protection Sciences, 19(1), 155–158.

Srivastava, S., Pathak, N., & Srivastava, P. (2011). Identification of Limiting Factors for the Optimum Growth of Fusarium Oxysporum in Liquid Medium. Toxicology International, 18(2), 111–116. https://doi.org/10.4103/0971-6580.84262

Takken, F., & Rep, M. (2010). The arms race between tomato and Fusarium oxysporum. Molecular Plant Pathology, 11(2), 309–314.

Tayal, P., Raj, S., Sharma, E., Kumar, M., Dayaman, V., Verma, N., Jogawat, A., Dua, M., Kapoor, R., & Johri, A. K. (2017). A Botrytis cinerea KLP-7 kinesin acts as a virulence determinant during plant infection. Scientific Reports, 7(1), 1–16.

Tintor, N., Paauw, M., Rep, M., & Takken, F. L. W. (2020). The root-invading pathogen Fusarium oxysporum targets pattern-triggered immunity using both cytoplasmic and apoplastic effectors. New Phytologist, 227(5), 1479–1492. https://doi.org/10.1111/nph.16618


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

COPYRIGHT of this Journal vests fully with the National Instional Institute of Ecology. Any commercial use of the content on this site in any form is legally prohibited.